脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python greenlet实现原理和使用示例

(编辑:jimmy 日期: 2025/1/11 浏览:3 次 )

最近开始研究Python的并行开发技术,包括多线程,多进程,协程等。逐步整理了网上的一些资料,今天整理了一下greenlet相关的资料。

并发处理的技术背景

并行化处理目前很受重视, 因为在很多时候,并行计算能大大的提高系统吞吐量,尤其在现在多核多处理器的时代, 所以像lisp这种古老的语言又被人们重新拿了起来, 函数式编程也越来越流行。 介绍一个python的并行处理的一个库: greenlet。 python 有一个非常有名的库叫做 stackless ,用来做并发处理, 主要是弄了个叫做tasklet的微线程的东西, 而greenlet 跟stackless的最大区别是, 他很轻量级?不够, 最大的区别是greenlet需要你自己来处理线程切换, 就是说,你需要自己指定现在执行哪个greenlet再执行哪个greenlet。

greenlet的实现机制

以前使用python开发web程序,一直使用的是fastcgi模式.然后每个进程中启动多个线程来进行请求处理.这里有一个问题就是需要保证每个请求响应时间都要特别短,不然只要多请求几次慢的就会让服务器拒绝服务,因为没有线程能够响应请求了.平时我们的服务上线都会进行性能测试的,所以正常情况没有太大问题.但是不可能所有场景都测试到.一旦出现就会让用户等好久没有响应.部分不可用导致全部不可用.后来转换到了coroutine,python 下的greenlet.所以对它的实现机制做了一个简单的了解.

每个greenlet都只是heap中的一个python object(PyGreenlet).所以对于一个进程你创建百万甚至千万个greenlet都没有问题.

复制代码 代码如下:
typedef struct _greenlet {
 PyObject_HEAD
 char* stack_start;
 char* stack_stop;
 char* stack_copy;
 intptr_t stack_saved;
 struct _greenlet* stack_prev;
 struct _greenlet* parent;
 PyObject* run_info;
 struct _frame* top_frame;
 int recursion_depth;
 PyObject* weakreflist;
 PyObject* exc_type;
 PyObject* exc_value;
 PyObject* exc_traceback;
 PyObject* dict;
} PyGreenlet;

每一个greenlet其实就是一个函数,以及保存这个函数执行时的上下文.对于函数来说上下文也就是其stack..同一个进程的所有的greenlets共用一个共同的操作系统分配的用户栈.所以同一时刻只能有栈数据不冲突的greenlet使用这个全局的栈.greenlet是通过stack_stop,stack_start来保存其stack的栈底和栈顶的,如果出现将要执行的greenlet的stack_stop和目前栈中的greenlet重叠的情况,就要把这些重叠的greenlet的栈中数据临时保存到heap中.保存的位置通过stack_copy和stack_saved来记录,以便恢复的时候从heap中拷贝回栈中stack_stop和stack_start的位置.不然就会出现其栈数据会被破坏的情况.所以应用程序创建的这些greenlet就是通过不断的拷贝数据到heap中或者从heap中拷贝到栈中来实现并发的.对于io型的应用程序使用coroutine真的非常舒服.

下面是greenlet的一个简单的栈空间模型(from greenlet.c)

复制代码 代码如下:
A PyGreenlet is a range of C stack addresses that must be
saved and restored in such a way that the full range of the
stack contains valid data when we switch to it.

Stack layout for a greenlet:

               |     ^^^       |
               |  older data   |
               |               |
  stack_stop . |_______________|
        .      |               |
        .      | greenlet data |
        .      |   in stack    |
        .    * |_______________| . .  _____________  stack_copy + stack_saved
        .      |               |     |             |
        .      |     data      |     |greenlet data|
        .      |   unrelated   |     |    saved    |
        .      |      to       |     |   in heap   |
 stack_start . |     this      | . . |_____________| stack_copy
               |   greenlet    |
               |               |
               |  newer data   |
               |     vvv       |

下面是一段简单的greenlet代码.

复制代码 代码如下:
from greenlet import greenlet

def test1():
    print 12
    gr2.switch()
    print 34

def test2():
    print 56
    gr1.switch()
    print 78

gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

目前所讨论的协程,一般是编程语言提供支持的。目前我所知提供协程支持的语言包括python,lua,go,erlang, scala和rust。协程不同于线程的地方在于协程不是操作系统进行切换,而是由程序员编码进行切换的,也就是说切换是由程序员控制的,这样就没有了线程所谓的安全问题。

所有的协程都共享整个进程的上下文,这样协程间的交换也非常方便。

相对于第二种方案(I/O多路复用),使得使用协程写的程序将更加的直观,而不是将一个完整的流程拆分成多个管理的事件处理。协程的缺点可能是无法利用多核优势,不过,这个可以通过协程+进程的方式来解决。

协程可以用来处理并发来提高性能,也可以用来实现状态机来简化编程。我用的更多的是第二个。去年年底接触python,了解到了python的协程概念,后来通过pycon china2011接触到处理yield,greenlet也是一个协程方案,而且在我看来是更可用的一个方案,特别是用来处理状态机。

目前这一块已经基本完成,后面抽时间总结一下。

总结一下:

1)多进程能够利用多核优势,但是进程间通信比较麻烦,另外,进程数目的增加会使性能下降,进程切换的成本较高。程序流程复杂度相对I/O多路复用要低。

2)I/O多路复用是在一个进程内部处理多个逻辑流程,不用进行进程切换,性能较高,另外流程间共享信息简单。但是无法利用多核优势,另外,程序流程被事件处理切割成一个个小块,程序比较复杂,难于理解。

3)线程运行在一个进程内部,由操作系统调度,切换成本较低,另外,他们共享进程的虚拟地址空间,线程间共享信息简单。但是线程安全问题导致线程学习曲线陡峭,而且易出错。

4)协程有编程语言提供,由程序员控制进行切换,所以没有线程安全问题,可以用来处理状态机,并发请求等。但是无法利用多核优势。

上面的四种方案可以配合使用,我比较看好的是进程+协程的模式。

上一篇:python元组操作实例解析
下一篇:Python中实现两个字典(dict)合并的方法
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。