脚本专栏 
首页 > 脚本专栏 > 浏览文章

解决tensorflow1.x版本加载saver.restore目录报错的问题

(编辑:jimmy 日期: 2026/1/20 浏览:3 次 )

这个错误是最新的错误哈,目前只在tensorflow上的github仓库上面有提出,所以你在百度上面找不到。

是个tensorflow的bug十天前提出的,只有github仓库上一个地方有提出。

NotFoundError (see above for traceback): Unsuccessful TensorSliceReader constructor: 

Failed to find any matching files for xxx
Traceback (most recent call last):
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1022, in _do_call
  return fn(*args)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1004, in _run_fn
  status, run_metadata)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\contextlib.py", line 66, in __exit__
  next(self.gen)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 466, in raise_exception_on_not_ok_status
  pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.NotFoundError: Unsuccessful TensorSliceReader constructor: Failed to find any matching files for D://model.ckpt
	 [[Node: save_1/RestoreV2_10 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save_1/Const_0, save_1/RestoreV2_10/tensor_names, save_1/RestoreV2_10/shape_and_slices)]]
 
During handling of the above exception, another exception occurred:
 
Traceback (most recent call last):
 File "F:/DeepStock/DeepStock/testCapacity.py", line 77, in <module>
  prediction(out)
 File "F:/DeepStock/DeepStock/testCapacity.py", line 63, in prediction
  saver.restore(sess, 'D://model.ckpt')
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\saver.py", line 1428, in restore
  {self.saver_def.filename_tensor_name: save_path})
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 767, in run
  run_metadata_ptr)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 965, in _run
  feed_dict_string, options, run_metadata)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1015, in _do_run
  target_list, options, run_metadata)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1035, in _do_call
  raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.NotFoundError: Unsuccessful TensorSliceReader constructor: Failed to find any matching files for D://model.ckpt
	 [[Node: save_1/RestoreV2_10 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save_1/Const_0, save_1/RestoreV2_10/tensor_names, save_1/RestoreV2_10/shape_and_slices)]]
 
Caused by op 'save_1/RestoreV2_10', defined at:
 File "F:/DeepStock/DeepStock/testCapacity.py", line 77, in <module>
  prediction(out)
 File "F:/DeepStock/DeepStock/testCapacity.py", line 60, in prediction
  saver = tf.train.Saver(tf.global_variables())
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\saver.py", line 1040, in __init__
  self.build()
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\saver.py", line 1070, in build
  restore_sequentially=self._restore_sequentially)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\saver.py", line 675, in build
  restore_sequentially, reshape)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\saver.py", line 402, in _AddRestoreOps
  tensors = self.restore_op(filename_tensor, saveable, preferred_shard)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\training\saver.py", line 242, in restore_op
  [spec.tensor.dtype])[0])
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\gen_io_ops.py", line 668, in restore_v2
  dtypes=dtypes, name=name)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 763, in apply_op
  op_def=op_def)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 2327, in create_op
  original_op=self._default_original_op, op_def=op_def)
 File "C:\Users\Administrator\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 1226, in __init__
  self._traceback = _extract_stack()
 
NotFoundError (see above for traceback): Unsuccessful TensorSliceReader constructor: Failed to find any matching files for D://model.ckpt
	 [[Node: save_1/RestoreV2_10 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save_1/Const_0, save_1/RestoreV2_10/tensor_names, save_1/RestoreV2_10/shape_and_slices)]]
 

改之前代码:

saver.restore(sess, 'D://model.ckpt')

将前面加上个点斜杠就好了。

saver.restore(sess, 'D://./model.ckpt')

如果你目录太复杂实在搞不明白用这个(默认加载checkout 文件中的最新的保存的数据):

module_file = tf.train.latest_checkpoint('E://deeplearning-master/deeplearning-master/tensorflow-program/save/')
with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  if module_file is not None:
    saver.restore(sess, module_file)

以上这篇解决tensorflow1.x版本加载saver.restore目录报错的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:python opencv实现图片旋转矩形分割
下一篇:Flask之flask-session的具体使用
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?