脚本专栏 
首页 > 脚本专栏 > 浏览文章

tensorflow 用矩阵运算替换for循环 用tf.tile而不写for的方法

(编辑:jimmy 日期: 2026/1/20 浏览:3 次 )

如下所示:

# u [32,30,200]
# u_logits [400,32,30]
q_j_400 = [] 
for j in range(400):
 q_j_400.append(tf.squeeze(tf.matmul(tf.transpose(u,[0,2,1]),tf.expand_dims(tf.nn.softmax(u_logits[j]),-1)),[2])) # tf.matmul [32,200,30],[32,30,1]
test_result = tf.stack(q_j_400)
test_result = tf.transpose(test_result,[1,0,2])

可以通过tf.tile实现更高速的版本

# u [32,30,200]
# u_logits [32,400,30]
u_tile = tf.tile(tf.expand_dims(u,1),[1,400,1,1])
u_logits = tf.expand_dims(tf.nn.softmax(u_logits,-1),-1)
test_result = tf.reduce_sum(u_logits * u_tile,-2) # [32,400,30,1]*[32,400,30,200]

以上这篇tensorflow 用矩阵运算替换for循环 用tf.tile而不写for的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Python实现输入二叉树的先序和中序遍历,再输出后序遍历操作示例
下一篇:tensorflow 加载部分变量的实例讲解
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?