脚本专栏 
首页 > 脚本专栏 > 浏览文章

浅谈tensorflow中几个随机函数的用法

(编辑:jimmy 日期: 2026/1/20 浏览:3 次 )

如下所示:

tf.constant(value, dtype=None, shape=None) 

创建一个常量tensor,按照给出value来赋值,可以用shape来指定其形状。value可以是一个数,也可以是一个list。 如果是一个数,那么这个常亮中所有值的按该数来赋值。

tf.random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32) 
tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32) 
tf.random_uniform(shape,minval=0,maxval=None,dtype=tf.float32) 

这几个都是用于生成随机数tensor的。尺寸是shape

random_normal: 正太分布随机数,均值mean,标准差stddev

truncated_normal: 截断正态分布随机数,均值mean,标准差stddev,不过只保留[mean-2*stddev,mean+2*stddev]范围内的随机数

random_uniform: 均匀分布随机数,范围为[minval,maxval]

以上这篇浅谈tensorflow中几个随机函数的用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Tensorflow 同时载入多个模型的实例讲解
下一篇:Tensorflow加载预训练模型和保存模型的实例
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?