脚本专栏 
首页 > 脚本专栏 > 浏览文章

Pandas_cum累积计算和rolling滚动计算的用法详解

(编辑:jimmy 日期: 2026/1/22 浏览:3 次 )

Pandas主要统计特征函数:

方法名 函数功能 sum() 计算数据样本的总和(按列计算) mean() 计算数据样本的算术平均数 var() 计算数据样本的方差 std() 计算数据样本的标准差 corr() 计算数据样本的Spearman(Pearman)相关系数矩阵 cov() 计算数据样本的协方差矩阵 skew() 样本值的偏度(三阶矩) kurt() 样本值的峰度(四阶矩) describe() 给出样本的基本描述(基本统计量如均值、标准差等)

cum累积计算函数

cum系列函数是作为DataFrame或Series对象的方法出现的,因此命令格式为D.cumsum()

方法名 函数功能 cumsum() 依次给出前1、2、… 、n个数的和 cumprod() 依次给出前1、2、… 、n个数的积 cummax() 依次给出前1、2、… 、n个数的最大值 cummin() 依次给出前1、2、… 、n个数的最小值

计算出前n项和:

D=pd.Series(range(0,20))
D.cumsum() 
0    0
1    1
2    3
3    6
....
19  190
dtype: int64

rolling滚动计算函数

rolling_系列是pandas的函数,不是DataFrame或Series对象的方法,其格式为pd.rolling_mean(D,k),其中每k列计算一次平均值,滚动计算。

方法名 函数功能 rolling_sum() 计算数据样本的总和(按列计算) rolling_mean() 数据样本的算术平均数 rolling_var() 计算数据样本的方差 rolling_std() 计算数据样本的标准差 rolling_corr() 计算数据样本的Spearman(Pearman)相关系数矩阵 rolling_cov() 计算数据样本的协方差矩阵 rolling_skew() 样本值的偏度(三阶矩) rolling_kurt() 样本值的峰度(四阶矩)

依次对相邻两项求和:

pd.rolling_sum(D,2)
0   NaN  
1   1.0
2   3.0
3   5.0
4   7.0
....
19  37.0
dtype: float64

以上这篇Pandas_cum累积计算和rolling滚动计算的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Python使用sklearn实现的各种回归算法示例
下一篇:python SQLAlchemy的Mapping与Declarative详解
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。