脚本专栏 
首页 > 脚本专栏 > 浏览文章

详解将Pandas中的DataFrame类型转换成Numpy中array类型的三种方法

(编辑:jimmy 日期: 2026/1/22 浏览:3 次 )

在用pandas包和numpy包对数据进行分析和计算时,经常用到DataFrame和array类型的数据。在对DataFrame类型的数据进行处理时,需要将其转换成array类型,是以下列出了三种转换方法。

首先导入numpy模块、pandas模块、创建一个DataFrame类型数据df

import numpy as np
import pandas as pd

df=pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]})

1.使用DataFrame中的values方法

df.values

2.使用DataFrame中的as_matrix()方法

df.as_matrix()

3.使用Numpy中的array方法

np.array(df)

三种方法效果相同,都能实现DataFrame到array的转换,效果如下。

详解将Pandas中的DataFrame类型转换成Numpy中array类型的三种方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:python和c语言的主要区别总结
下一篇:pandas进行时间数据的转换和计算时间差并提取年月日
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。