脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python + OpenCV 实现LBP特征提取的示例代码

(编辑:jimmy 日期: 2026/1/22 浏览:3 次 )

背景

看了些许的纹理特征提取的paper,想自己实现其中部分算法,看看特征提取之后的效果是怎样

运行环境

  • Mac OS
  • Python3.0
  • Anaconda3(集成了很多包,浏览器界面编程,清爽)

步骤

导入包

from skimage.transform import rotate
from skimage.feature import local_binary_pattern
from skimage import data, io,data_dir,filters, feature
from skimage.color import label2rgb
import skimage
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import cv2

参数设置

# settings for LBP
radius = 1 # LBP算法中范围半径的取值
n_points = 8 * radius # 领域像素点数

图像读取

# 读取图像
image = cv2.imread('img/logo.png')
#显示到plt中,需要从BGR转化到RGB,若是cv2.imshow(win_name, image),则不需要转化
image1 = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
plt.subplot(111)
plt.imshow(image1)

Python + OpenCV 实现LBP特征提取的示例代码

灰度转换

image = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
plt.subplot(111)
plt.imshow(image, plt.cm.gray)

LBP处理

lbp = local_binary_pattern(image, n_points, radius)
plt.subplot(111)
plt.imshow(lbp, plt.cm.gray)

Python + OpenCV 实现LBP特征提取的示例代码

边缘提取

edges = filters.sobel(image)
plt.subplot(111)
plt.imshow(edges, plt.cm.gray)

Python + OpenCV 实现LBP特征提取的示例代码

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:Python循环结构的应用场景详解
下一篇:python列表,字典,元组简单用法示例
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。