脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python分割训练集和测试集的方法示例

(编辑:jimmy 日期: 2025/11/18 浏览:3 次 )

数据集介绍

使用数据集Wine,来自UCI  。包括178条样本,13个特征。

import pandas as pd
import numpy as np

df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None)
df_wine.columns = ['Class label', 'Alcohol',
              'Malic acid', 'Ash',
              'Alcalinity of ash', 'Magnesium',
              'Total phenols', 'Flavanoids',
              'Nonflavanoid phenols',
              'Proanthocyanins',
              'Color intensity', 'Hue',
              'OD280/OD315 of diluted wines',
              'Proline']

分割训练集和测试集

随机分割

分为训练集和测试集

方法:使用scikit-learn中model_selection子模块的train_test_split函数

from sklearn.model_selection import train_test_split

X, y = df_wine.ix[:, 1:].values, df_wine.ix[:, 0].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)#随机选择25%作为测试集,剩余作为训练集

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:Python Opencv提取图片中某种颜色组成的图形的方法
下一篇:pandas read_excel()和to_excel()函数解析
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?