脚本专栏 
首页 > 脚本专栏 > 浏览文章

详解Python中打乱列表顺序random.shuffle()的使用方法

(编辑:jimmy 日期: 2025/11/18 浏览:3 次 )

之前自己一直使用random中 randint生成随机数以及使用for将列表中的数据遍历一次。

现在有个需求需要将列表的次序打乱,或者也可以这样理解:

【需求】将一个容器中的数据每次随机逐个遍历一遍。

random.shuffle()方法提供了完美的解决方案。

不会生成新的列表,只是将原列表的次序打乱

# shuffle()使用样例
import random

x = [i for i in range(10)]
print(x)
random.shuffle(x)
print(x)

源码及注释(个人翻译注释)

def shuffle(self, x, random=None):
  """Shuffle list x in place, and return None.
  原位打乱列表,不生成新的列表。

  Optional argument random is a 0-argument
  function returning a random float in [0.0, 1.0); 
  if it is the default None, 
  the standard random.random will be used.
 可选参数random是一个从0到参数的函数,返回[0.0,1.0)中的随机浮点;
 如果random是缺省值None,则将使用标准的random.random()。
  """

  if random is None:
    randbelow = self._randbelow
    for i in reversed(range(1, len(x))):
      # pick an element in x[:i+1] with which to exchange x[i]
      j = randbelow(i + 1)
      x[i], x[j] = x[j], x[i]
  else:
    _int = int
    for i in reversed(range(1, len(x))):
      # pick an element in x[:i+1] with which to exchange x[i]
      j = _int(random() * (i + 1))
      x[i], x[j] = x[j], x[i]

random 中其他的方法

class Random(_random.Random):

  ## -------------------- integer methods -------------------
  def randrange(self, start, stop=None, step=1, _int=int):

  def randint(self, a, b):

  def _randbelow(self, n, int=int, maxsize=1 << BPF, type=type,
          Method=_MethodType, BuiltinMethod=_BuiltinMethodType):

  ## -------------------- sequence methods -------------------
  def choice(self, seq):

  def shuffle(self, x, random=None):

  def sample(self, population, k):

  def choices(self, population, weights=None, *, cum_weights=None, k=1):

  ## -------------------- uniform distribution -------------------
  def uniform(self, a, b):

  ## -------------------- triangular --------------------
  def triangular(self, low=0.0, high=1.0, mode=None):

  ## -------------------- normal distribution --------------------
  def normalvariate(self, mu, sigma):

  ## -------------------- lognormal distribution --------------------
  def lognormvariate(self, mu, sigma):

  ## -------------------- exponential distribution --------------------
  def expovariate(self, lambd):

  ## -------------------- von Mises distribution --------------------
  def vonmisesvariate(self, mu, kappa):

  ## -------------------- gamma distribution --------------------
  def gammavariate(self, alpha, beta):

  ## -------------------- Gauss (faster alternative) --------------------
  def gauss(self, mu, sigma):

  def betavariate(self, alpha, beta):

  ## -------------------- Pareto --------------------
  def paretovariate(self, alpha):

  ## -------------------- Weibull --------------------
  def weibullvariate(self, alpha, beta):

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:浅谈Python类中的self到底是干啥的
下一篇:python 调试冷知识(小结)
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?