脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python numpy线性代数用法实例解析

(编辑:jimmy 日期: 2025/11/18 浏览:3 次 )

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

> import numpy as np
> x=np.array([[1,2,3],[4,5,6]])
> y=np.array([[7,8],[-1,7],[8,9]])
> x
array([[1, 2, 3],
    [4, 5, 6]])
> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

> a=np.array([[1,2],[3,4]])
> b=np.array([[11,12],[12,13]])
> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
> a=np.array([[1,2],[3,4]])
> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

Python numpy线性代数用法实例解析

> import numpy as np
> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
> ainv = np.linalg.inv(a)#求矩阵的逆
> b = np.array([[6],[-4],[27]])
> x = np.linalg.solve(a,b)#求解需要A-1和B
> x
array([[ 5.],
    [ 3.],
    [-2.]])
>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:Django通过dwebsocket实现websocket的例子
下一篇:Django中提示消息messages的设置方式
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?