脚本专栏 
首页 > 脚本专栏 > 浏览文章

sklearn线性逻辑回归和非线性逻辑回归的实现

(编辑:jimmy 日期: 2025/1/11 浏览:3 次 )

线性逻辑回归

本文用代码实现怎么利用sklearn来进行线性逻辑回归的计算,下面先来看看用到的数据。

sklearn线性逻辑回归和非线性逻辑回归的实现

这是有两行特征的数据,然后第三行是数据的标签。

python代码

首先导入包和载入数据

sklearn线性逻辑回归和非线性逻辑回归的实现

写一个画图的函数,把这些数据表示出来:

sklearn线性逻辑回归和非线性逻辑回归的实现

然后我们调用这个函数得到下面的图像:

sklearn线性逻辑回归和非线性逻辑回归的实现

接下来开始创建模型并拟合,然后调用sklearn里面的逻辑回归方法,里面的函数可以自动帮算出权值和偏置值,非常简单,接着画出图像。

sklearn线性逻辑回归和非线性逻辑回归的实现

sklearn线性逻辑回归和非线性逻辑回归的实现

最后我们可以来看看评估值:
sklearn线性逻辑回归和非线性逻辑回归的实现

sklearn线性逻辑回归和非线性逻辑回归的实现

可以看到,正确率、召回率、F1值都达到了95%。

非线性逻辑回归

非线性逻辑回归意味着决策边界是曲线,和线性逻辑回归的原理是差不多的,这里用到的数据是datasets自动生成的,

sklearn线性逻辑回归和非线性逻辑回归的实现

sklearn线性逻辑回归和非线性逻辑回归的实现

接下来要把数据进行多项式处理,简单地说就是增加数据的特征,

sklearn线性逻辑回归和非线性逻辑回归的实现

然后规定好图像的坐标值,并生成一个网格矩阵,

sklearn线性逻辑回归和非线性逻辑回归的实现

定义一个等高线的高,

sklearn线性逻辑回归和非线性逻辑回归的实现

结果一目了然,很好的分成了两类:

sklearn线性逻辑回归和非线性逻辑回归的实现

看一下准确率,98%,说明算比较成功,准确率很高。

sklearn线性逻辑回归和非线性逻辑回归的实现

sklearn线性逻辑回归和非线性逻辑回归的实现

线性逻辑回归和非线性逻辑回归用到的代价函数都是一样的,原理相同,只不过是预估函数的复杂度不一样,非线性逻辑回归要对数据进行多项式处理,增加数据的特征量。

上一篇:Python导入数值型Excel数据并生成矩阵操作
下一篇:Python带参数的装饰器运行原理解析
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。