脚本专栏 
首页 > 脚本专栏 > 浏览文章

TensorFlow保存TensorBoard图像操作

(编辑:jimmy 日期: 2025/9/23 浏览:3 次 )

简单的代码:

import tensorflow as tf

In [2]: matrix1=tf.constant([[3.,3.]])
In [3]: matrix2=tf.constant([[2.],[2.]])

with tf.Session() as sess:
  ...:   writer = tf.summary.FileWriter('./graph', sess.graph)
  ...:   result = sess.run(tf.matmul(matrix1, matrix2))
  ...:   writer.close()

ipython中使用!+命令可以直接运行terminal命令。

terminal输入: tensorboard --logdir graph/

跳出:Starting TensorBoard 54 at http://amax:6006

在浏览器输入地址加端口号并在graph中查看。

补充知识:tensorflow 利用保存的meta图文件生成log供tensorboard可视化 保存恢复模型

tensorboard可视化图:

import tensorflow as tf
g = tf.Graph() 
with g.as_default() as g: 
  tf.train.import_meta_graph('criteo_80.meta') 
 
with tf.Session(graph=g) as sess: 
  file_writer = tf.summary.FileWriter(logdir='./', graph=g)

保存恢复模型:

# 建模型
saver = tf.train.Saver()
 
with tf.Session() as sess:
  # 存模型,注意此处的model是文件名非路径
  saver.save(sess, "/tmp/model")
 
with tf.Session() as sess:
  # 恢复模型
  saver.restore(sess, "/tmp/model")
# 先恢复图
saver = tf.train.import_meta_graph("/tmp/model.meta")
 
with tf.Session() as sess:
  # 再恢复参数
  saver.restore(sess, "/tmp/model")

以上这篇TensorFlow保存TensorBoard图像操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:解决tensorflow 释放图,删除变量问题
下一篇:TensorFlow中如何确定张量的形状实例
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?