脚本专栏 
首页 > 脚本专栏 > 浏览文章

pytorch 限制GPU使用效率详解(计算效率)

(编辑:jimmy 日期: 2025/7/8 浏览:3 次 )

问题

用过 tensorflow 的人都知道, tf 可以限制程序在 GPU 中的使用效率,但 pytorch 中没有这个操作。

思路

于是我想到了一个代替方法,玩过单片机点灯的同学都知道,灯的亮度是靠占空比实现的,这实际上也是计算机的运行原理。 那我们是不是也可以通过增加 GPU 不工作的时间,进而降低 GPU 的使用效率 ?

主要代码

import time
...
rest_time = 0.15
...
for _ in range( XXX ):
  ...
  outputs = all_GPU_operations( data_set ) # 假设所有的GPU运算都在这里
  time.sleep( rest_time )         # 让显卡休息一会再进行下个循环的使用
  ...
...

这样子 GPU 的使用效率就可以减小了。

rest_time 的越大 GPU 使用率越低,rest_time 的越小 GPU 使用率越高。

缺点是很难直接控制 GPU 的具体使用率,rest_time 得自己调试后确定。

补充知识:深度学习PyTorch,TensorFlow中GPU利用率较低,使用率周期性变化的问题

在用tensorflow训练神经网络时,发现训练迭代的速度时而快时而慢,监督的GPU使用率也是周期性变化,通过了解,发现原因是:

GPU在等待CPU读取,预处理,并传输数据过来,因此要提高GPU的使用率,降低GPU的等待时间,需要加快CPU的处理速度.

在PYTORCH中的解决方案是用torch.utils.data.DataLoader,用num_workers设置线程数:

torch.utils.data.DataLoader(image_datasets[x],
  batch_size=batch_size,
   shuffle=True,
   num_workers=8,
  pin_memory=True)

在tensorflow中的解决方案是用tf.data.Dataset.map(num_parallel_calls=8)中的num_parallel_calls设置读取数据的线程数:

用 tf.data读取数据, tf.data.Dataset中有一个map函数,它有个num_parallel_calls参数,可以控制CPU的线程,加快数据的读取速度,一般将线程设置为8效果最好.

以上这篇pytorch 限制GPU使用效率详解(计算效率)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:PyTorch之nn.ReLU与F.ReLU的区别介绍
下一篇:Pytorch 高效使用GPU的操作
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?