脚本专栏 
首页 > 脚本专栏 > 浏览文章

python opencv肤色检测的实现示例

(编辑:jimmy 日期: 2025/1/7 浏览:3 次 )

1 椭圆肤色检测模型

原理:将RGB图像转换到YCRCB空间,肤色像素点会聚集到一个椭圆区域。先定义一个椭圆模型,然后将每个RGB像素点转换到YCRCB空间比对是否再椭圆区域,是的话判断为皮肤。

YCRCB颜色空间

python opencv肤色检测的实现示例python opencv肤色检测的实现示例

椭圆模型

python opencv肤色检测的实现示例

代码

def ellipse_detect(image):
  """
  :param image: 图片路径
  :return: None
  """
  img = cv2.imread(image,cv2.IMREAD_COLOR)
  skinCrCbHist = np.zeros((256,256), dtype= np.uint8 )
  cv2.ellipse(skinCrCbHist ,(113,155),(23,15),43,0, 360, (255,255,255),-1)
 
  YCRCB = cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB)
  (y,cr,cb)= cv2.split(YCRCB)
  skin = np.zeros(cr.shape, dtype=np.uint8)
  (x,y)= cr.shape
  for i in range(0,x):
    for j in range(0,y):
      CR= YCRCB[i,j,1]
      CB= YCRCB[i,j,2]
      if skinCrCbHist [CR,CB]>0:
        skin[i,j]= 255
  cv2.namedWindow(image, cv2.WINDOW_NORMAL)
  cv2.imshow(image, img)
  dst = cv2.bitwise_and(img,img,mask= skin)
  cv2.namedWindow("cutout", cv2.WINDOW_NORMAL)
  cv2.imshow("cutout",dst)
  cv2.waitKey()

效果

python opencv肤色检测的实现示例

2 YCrCb颜色空间的Cr分量+Otsu法阈值分割算法

原理

针对YCRCB中CR分量的处理,将RGB转换为YCRCB,对CR通道单独进行otsu处理,otsu方法opencv里用threshold

代码

def cr_otsu(image):
  """YCrCb颜色空间的Cr分量+Otsu阈值分割
  :param image: 图片路径
  :return: None
  """
  img = cv2.imread(image, cv2.IMREAD_COLOR)
  ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB)
 
  (y, cr, cb) = cv2.split(ycrcb)
  cr1 = cv2.GaussianBlur(cr, (5, 5), 0)
  _, skin = cv2.threshold(cr1,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
 
  cv2.namedWindow("image raw", cv2.WINDOW_NORMAL)
  cv2.imshow("image raw", img)
  cv2.namedWindow("image CR", cv2.WINDOW_NORMAL)
  cv2.imshow("image CR", cr1)
  cv2.namedWindow("Skin Cr+OTSU", cv2.WINDOW_NORMAL)
  cv2.imshow("Skin Cr+OTSU", skin)
 
  dst = cv2.bitwise_and(img, img, mask=skin)
  cv2.namedWindow("seperate", cv2.WINDOW_NORMAL)
  cv2.imshow("seperate", dst)
  cv2.waitKey()

效果

python opencv肤色检测的实现示例

3 基于YCrCb颜色空间Cr, Cb范围筛选法

 原理

类似于第二种方法,只不过是对CR和CB两个通道综合考虑

代码

def crcb_range_sceening(image):
  """
  :param image: 图片路径
  :return: None
  """
  img = cv2.imread(image,cv2.IMREAD_COLOR)
  ycrcb=cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB)
  (y,cr,cb)= cv2.split(ycrcb)
 
  skin = np.zeros(cr.shape,dtype= np.uint8)
  (x,y)= cr.shape
  for i in range(0,x):
    for j in range(0,y):
      if (cr[i][j]>140)and(cr[i][j])<175 and (cr[i][j]>100) and (cb[i][j])<120:
        skin[i][j]= 255
      else:
        skin[i][j] = 0
  cv2.namedWindow(image,cv2.WINDOW_NORMAL)
  cv2.imshow(image,img)
  cv2.namedWindow(image+"skin2 cr+cb",cv2.WINDOW_NORMAL)
  cv2.imshow(image+"skin2 cr+cb",skin)
 
  dst = cv2.bitwise_and(img,img,mask=skin)
  cv2.namedWindow("cutout",cv2.WINDOW_NORMAL)
  cv2.imshow("cutout",dst)
 
  cv2.waitKey()

效果

python opencv肤色检测的实现示例

4 HSV颜色空间H,S,V范围筛选法

原理

还是转换空间然后每个通道设置一个阈值综合考虑,进行二值化操作。

代码

def hsv_detect(image):
  """
  :param image: 图片路径
  :return: None
  """
  img = cv2.imread(image,cv2.IMREAD_COLOR)
  hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
  (_h,_s,_v)= cv2.split(hsv)
  skin= np.zeros(_h.shape,dtype=np.uint8)
  (x,y)= _h.shape
 
  for i in range(0,x):
    for j in range(0,y):
      if(_h[i][j]>7) and (_h[i][j]<20) and (_s[i][j]>28) and (_s[i][j]<255) and (_v[i][j]>50 ) and (_v[i][j]<255):
        skin[i][j] = 255
      else:
        skin[i][j] = 0
  cv2.namedWindow(image, cv2.WINDOW_NORMAL)
  cv2.imshow(image, img)
  cv2.namedWindow(image + "hsv", cv2.WINDOW_NORMAL)
  cv2.imshow(image + "hsv", skin)
  dst = cv2.bitwise_and(img, img, mask=skin)
  cv2.namedWindow("cutout", cv2.WINDOW_NORMAL)
  cv2.imshow("cutout", dst)
  cv2.waitKey()

效果

python opencv肤色检测的实现示例

示例

import cv2
import numpy as np
 
 
def ellipse_detect(image):
  """
  :param image: img path
  :return: None
  """
  img = cv2.imread(image, cv2.IMREAD_COLOR)
  skinCrCbHist = np.zeros((256, 256), dtype=np.uint8)
  cv2.ellipse(skinCrCbHist, (113, 155), (23, 15), 43, 0, 360, (255, 255, 255), -1)
 
  YCRCB = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB)
  (y, cr, cb) = cv2.split(YCRCB)
  skin = np.zeros(cr.shape, dtype=np.uint8)
  (x, y) = cr.shape
  for i in range(0, x):
    for j in range(0, y):
      CR = YCRCB[i, j, 1]
      CB = YCRCB[i, j, 2]
      if skinCrCbHist[CR, CB] > 0:
        skin[i, j] = 255
  cv2.namedWindow(image, cv2.WINDOW_NORMAL)
  cv2.imshow(image, img)
  dst = cv2.bitwise_and(img, img, mask=skin)
  cv2.namedWindow("cutout", cv2.WINDOW_NORMAL)
  cv2.imshow("cutout", dst)
  cv2.waitKey()
 
 
 
if __name__ == '__main__':
  ellipse_detect('./test.png')

 到此这篇关于python opencv肤色检测的实现示例的文章就介绍到这了,更多相关opencv 肤色检测内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

上一篇:OpenCV+python实现膨胀和腐蚀的示例
下一篇:python文件路径操作方法总结
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?