python opencv肤色检测的实现示例
(编辑:jimmy 日期: 2025/1/7 浏览:3 次 )
1 椭圆肤色检测模型
原理:将RGB图像转换到YCRCB空间,肤色像素点会聚集到一个椭圆区域。先定义一个椭圆模型,然后将每个RGB像素点转换到YCRCB空间比对是否再椭圆区域,是的话判断为皮肤。
YCRCB颜色空间
椭圆模型
代码
def ellipse_detect(image): """ :param image: 图片路径 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR) skinCrCbHist = np.zeros((256,256), dtype= np.uint8 ) cv2.ellipse(skinCrCbHist ,(113,155),(23,15),43,0, 360, (255,255,255),-1) YCRCB = cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB) (y,cr,cb)= cv2.split(YCRCB) skin = np.zeros(cr.shape, dtype=np.uint8) (x,y)= cr.shape for i in range(0,x): for j in range(0,y): CR= YCRCB[i,j,1] CB= YCRCB[i,j,2] if skinCrCbHist [CR,CB]>0: skin[i,j]= 255 cv2.namedWindow(image, cv2.WINDOW_NORMAL) cv2.imshow(image, img) dst = cv2.bitwise_and(img,img,mask= skin) cv2.namedWindow("cutout", cv2.WINDOW_NORMAL) cv2.imshow("cutout",dst) cv2.waitKey()
效果
2 YCrCb颜色空间的Cr分量+Otsu法阈值分割算法
原理
针对YCRCB中CR分量的处理,将RGB转换为YCRCB,对CR通道单独进行otsu处理,otsu方法opencv里用threshold
代码
def cr_otsu(image): """YCrCb颜色空间的Cr分量+Otsu阈值分割 :param image: 图片路径 :return: None """ img = cv2.imread(image, cv2.IMREAD_COLOR) ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) (y, cr, cb) = cv2.split(ycrcb) cr1 = cv2.GaussianBlur(cr, (5, 5), 0) _, skin = cv2.threshold(cr1,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) cv2.namedWindow("image raw", cv2.WINDOW_NORMAL) cv2.imshow("image raw", img) cv2.namedWindow("image CR", cv2.WINDOW_NORMAL) cv2.imshow("image CR", cr1) cv2.namedWindow("Skin Cr+OTSU", cv2.WINDOW_NORMAL) cv2.imshow("Skin Cr+OTSU", skin) dst = cv2.bitwise_and(img, img, mask=skin) cv2.namedWindow("seperate", cv2.WINDOW_NORMAL) cv2.imshow("seperate", dst) cv2.waitKey()
效果
3 基于YCrCb颜色空间Cr, Cb范围筛选法
原理
类似于第二种方法,只不过是对CR和CB两个通道综合考虑
代码
def crcb_range_sceening(image): """ :param image: 图片路径 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR) ycrcb=cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB) (y,cr,cb)= cv2.split(ycrcb) skin = np.zeros(cr.shape,dtype= np.uint8) (x,y)= cr.shape for i in range(0,x): for j in range(0,y): if (cr[i][j]>140)and(cr[i][j])<175 and (cr[i][j]>100) and (cb[i][j])<120: skin[i][j]= 255 else: skin[i][j] = 0 cv2.namedWindow(image,cv2.WINDOW_NORMAL) cv2.imshow(image,img) cv2.namedWindow(image+"skin2 cr+cb",cv2.WINDOW_NORMAL) cv2.imshow(image+"skin2 cr+cb",skin) dst = cv2.bitwise_and(img,img,mask=skin) cv2.namedWindow("cutout",cv2.WINDOW_NORMAL) cv2.imshow("cutout",dst) cv2.waitKey()
效果
4 HSV颜色空间H,S,V范围筛选法
原理
还是转换空间然后每个通道设置一个阈值综合考虑,进行二值化操作。
代码
def hsv_detect(image): """ :param image: 图片路径 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR) hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV) (_h,_s,_v)= cv2.split(hsv) skin= np.zeros(_h.shape,dtype=np.uint8) (x,y)= _h.shape for i in range(0,x): for j in range(0,y): if(_h[i][j]>7) and (_h[i][j]<20) and (_s[i][j]>28) and (_s[i][j]<255) and (_v[i][j]>50 ) and (_v[i][j]<255): skin[i][j] = 255 else: skin[i][j] = 0 cv2.namedWindow(image, cv2.WINDOW_NORMAL) cv2.imshow(image, img) cv2.namedWindow(image + "hsv", cv2.WINDOW_NORMAL) cv2.imshow(image + "hsv", skin) dst = cv2.bitwise_and(img, img, mask=skin) cv2.namedWindow("cutout", cv2.WINDOW_NORMAL) cv2.imshow("cutout", dst) cv2.waitKey()
效果
示例
import cv2 import numpy as np def ellipse_detect(image): """ :param image: img path :return: None """ img = cv2.imread(image, cv2.IMREAD_COLOR) skinCrCbHist = np.zeros((256, 256), dtype=np.uint8) cv2.ellipse(skinCrCbHist, (113, 155), (23, 15), 43, 0, 360, (255, 255, 255), -1) YCRCB = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) (y, cr, cb) = cv2.split(YCRCB) skin = np.zeros(cr.shape, dtype=np.uint8) (x, y) = cr.shape for i in range(0, x): for j in range(0, y): CR = YCRCB[i, j, 1] CB = YCRCB[i, j, 2] if skinCrCbHist[CR, CB] > 0: skin[i, j] = 255 cv2.namedWindow(image, cv2.WINDOW_NORMAL) cv2.imshow(image, img) dst = cv2.bitwise_and(img, img, mask=skin) cv2.namedWindow("cutout", cv2.WINDOW_NORMAL) cv2.imshow("cutout", dst) cv2.waitKey() if __name__ == '__main__': ellipse_detect('./test.png')
到此这篇关于python opencv肤色检测的实现示例的文章就介绍到这了,更多相关opencv 肤色检测内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
下一篇:python文件路径操作方法总结